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ABSTRACT

An approximate but highly accurate simple
closed form solution for the element
values of non-contiguous lewpass/highpass
diplexers has been obtained using
broadband matching theory. Excellent
results are demonstrated by analysis of
several diplexers of degree 10 having
return loss of 26 dB. Suggestions are made
for extending the method to other types of
non-contiguous multiplexers.

INTRODUCTION

Closed~form formulas for the design of
contiguous diplexers are well known, but
no such formulas have been available for
lowpass/highpass non-contiguous diplexers
having Chebyshev characteristies, This
paper presents an analytical derivation of
a set of formulas in closed form which are
approximate in the sense of giving a non-
exactly equi-ripple result for the common
port VSWR, but one that is acceptable by
normal standards. One may note that even
the existing contiguous diplexer theory
based on singly-terminated prototypes is
also an accurate approximation.
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Fig. 1 Diplexer circuit
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The non-contiguous diplexer consists of
lowpass and highpass filters connected at
& common junction, as shown in Fig, 1},
whlch.lllustrates a shunt connection. The
two filters are assumed to have Chebyshev
response characteristics with all

transmission zeros at the extreme
frequencies , although more general cases
with finite frequency attenuation poles
are amenable to szsomewhat different
treatment.

Synthesis of non-contiguous multiplexers
having several narrow bandwidth channels
has been described [1]. This is based on
a perturbation theory where the the input
admittance of each channel ig expressed as
a series expansion of terms dependent on
the inter-channel spa¢ings, The metheod is
suitable for total bandwidths up to one
octave, and is not applicable to the
lowpass/highpass case considered here.

This paper describes an approximate but
very accurate analytical method based on
the theory of broadband matching. Each
filter is designed as a broadband matching
network over its respective low or high
passband, with the immittance of the other
filter representing the load network to be
matched. It is found that excellent
results are obtained when only the first
element of the "other" filter is taken
into account in the load network. Good
results almost to fully contiguous
operation are obtained for high-degree
Chebyshev lowpass/highpass diplexers.

THEORY

Fig. 2 illustrates the diplexer
characteristics for low and high pass
filters designed using the same prototype,
leading to the reciprocal relationship

W —» 1/w (1)
where the equi-ripple pass band edges are
W, and 1/’&%‘
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Fig. 2 Diplexer response characteristics

When Wy is sufficiently small the problem
may be solved with marginally acceptable
results by designing independent doubly~-
terminated filters. The ripple closest to
cut~off is usually quite bad, and recourse
to optimization is generally required.

At the other extreme we have the contiguous
situation which effectively defines an
upper limit to & 1lying typically in the
range .6 - .9, depending on degree n and
ripple level.

Here we are interested in the solution for
intermediate cases.

As stated above the method is to design
each filter as a matching network, with
the first element of the other filter in
shunt across the common port representing
the lcad network to be matched. There are
two sets of conditions to be
simultaneously satisfied, one for each
filter.

n odd

n even

Fig. 3 Lowpass matching nework

Consider the matching problem of Fig 3.
having +the closed form solution given
previously [2]. Since the network has n+l

reactive elements, n for the filter and 1l
for the load element due to the other
channel, it is logical to modify the
notation given in [3] so that the load
element is g; and the filter elements have
indices from 1 to n, leading to the

formulas
2sin (T1/2N)
Jo 7 X -y (2)
9r9r+1
4 gin(2r-1)TY/2N sin(2r+1)TW/2N
> 2 > (3)
X% + y© + sin“r1/N - 2xycosrTi/N
for
r=20,1,2,...n, with N = n+l (4)
and
§ = {gn/9g) - (x+y)/(x-y) (5)

The matching network possesses an equi-
ripple response with the reflection
coefficient varying between

e cosh Nsinh'ly
max = (6)
cosh Nsinh™'x

and

sinh Nsinh"Jy
Q min = 7 (7)
sinh Nsinh™-x

The value of the terminating resistance is
equal to the VSWR

Smax = (1+)/(1-R) (8)
calculated from (6) when N is even and is
equal to J/Smin calculated from (7) when N
is odd.

In matching theory the value of the
maximum pass band reflection coefficient
(6) is minimized under the constraint
imposed by the lcocad network, but here we
have a different set of conditions to be
satisfied, namely that the reactive part
of the load network is equal to that of
the first element of the other channel.
Referring to Fig 1, this gives the
condition




When the similar set of conditions is
written down for the matching of the
highpass filter it is found that the
identical equation (9) results, as
expected from the reciprocal relationship

().

Hence the desired set of g values for a
given VSWR is obtained by solving for the
known maximum reflection coefficient (6)
under the constraint imposed by (9), i.e.
there are two equations to solve for the
two unknowns x and y.

Actually it is necessary to modify the
theory to allow for the value of the
terminating resistances (S ., for N even
or 1/S,in for N odd), noting that when we
replace these by unity, the actual VSWR
will increase to Sﬁé for N even and to
SmaxSmin for N odd. Tﬁus in the case of N
even we must design for a VSWR of /S 4/
and since in practice it turns out that

there is little difference between S
and Spi, , we use the same value for N odd.

In the more general case when the low and
high pass filters have different degrees,
we will have 4 equations with 4 unknowns,
readily solvable by iteration.

RESULTS

To illustrate the validity of the method
it was decided to investigate high-degree
cases having very good return losses,
thus insuring a severe test of the theory.

Typical results for 10 section non-
contiguous diplexers are shown in Fig. 4
for a return loss of 26 dB with normalized
band edge parameterstd1 of .4, .7 and .81,
the latter representing 98% of the
contiguous case.

The return loss is practically identical
to the design level almost everywhere, the
only notable deterioration being to 20 4B
for the almost~contiguous case. Ag LI,
decreases the actual bandwidth increases,
which may be corrected by compensation,
(i.e. design for a slightly smaller Wy).
Also one or two of the return loss poles
become suppressed compared with the
prototype.
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CLlement values for a number of cases,
including those plotted in Fig. 4, are
given in Table 1, together with the
doubly- and singly-terminated (contiguous)
values for purposes of comparison. The
non-contiguous designs may be considered
reasonably asymptotic to the singly-
terminated values at the high®; end, but
not to the doubly-terminated values at the
low end. This is not surprising since
analysis shows that return loss of the
latter is only 12.8 dB when applied to the
case W = .5 and 15 4B for wW; = .4,
indicating the necessgity for the new
equations.

We note that in this theory the g values
all ehange compared with the doubly-
terminated values, as in the case of the
g values for contiguous diplexers.,

CONCLUSIONS

Closed~form formulas for the design of
non—-contiguous lowpass/highpass diplexers
have been presented, giving an almost
perfect equi-ripple common port VSWR
response. The theory is based on broadband
matching with the out-of-band channel
representing the load network for the in-

It would be interesting to extend the
theory to situations other than the simple
lowpass/highpass case, e.g. to several
broadband bandpass channels. Here it is
unlikely that closed-form equations would
result, but the principle of applying
broadband matching theory still holds, and
numerical synthesis techniques might be
applied.

Another extension would be to take into
account the first two or more elements of
the out-of-band filter, giving a more
complicated matching problem which
possibly could be tackled using general
broadband matching theory [3].
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TABLE 1
Element values for diplexers, n=10

g 1 2 3 4 5 6 7 8 9 io
Doubly- o '
term. 0.8299 1.4406 1,8280 1.7306 1.9435 1.7580 1.9132 1.6535 1.5926 0.7507
0.4 0.6379 1.0558 1.1752 1.4615 1.4130 1.6192 1.4755 1.5484 1.2596 0.7299
0.5 0.7842 1.2447 1.3369 1.6193 1.5370 1.7387 1.5707 1.6765 1.3285 0.7685
0.6 0.9228 1.3990 1.4595 1.7271 1.6209 1.8129 1.6317 1.7300 1.3695 0.7870
0.7 1.0520 1.5235 1.5525 1.8017 1.6796 1.8603 1.6726 1.7618 1.3949 0.7950
0.81 1.1841 1.6287 1.6325 1.8542 1.7278 1.8887 1,7047 1,7753 1.4092 0.7880
?gngég%) 1.2326 1.6551 11,5358 1.7060 1.5387 1.6846 1.4917 1.5706 31,2355 0.7112

546




