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SYNTHESIS OF NON-CONTIGUOUS DIPLEXERS
USING BROADBAND MATCHING THEORY
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ABSTRACT

An approximate but highly accurate simple

close’d form solution for the element
values of non-contiguous lawpasslhighpass

diplexers has been obtained using
broadband matching theory. Excellent
results are demonstrated by anaJysis of
several diplexers of degree 10 having
return loss of 26 dB. Suggestions are made
for extending the method to other types of
non-contiguous multiplexer.

INTRODUCTION

Closed-form formulas for the design of
contiguous diplexers are well known, but
no such formulas have been available for
lowpass[highpass rmn-aontiguoue diplexers
having Chebyshev characteristics, This
paper presents an analytical derivation of
a set of formulas in closed form which are
approximate in the sense of giving a non-
exactly equi-ripple result for the common
port VSWR, but one that is acceptable by
normal standards. One may note that even
the existing contiguous diplexer theory
based on singly-terminated prototypes is
also an accurate approximation.

Fig. 1 Diplexer circuit

The n~n-contiguous diplexer consists of
lowpass and highpass filters connected at
a comm~n junction, as sh~wn in Fig, I,
which illustrates a shunt connection,,

The
two filters are aasumed to have Chebyshev

response characteristics with all.

transmission zeros at the extreme

frequencies , although more general cases
with finite frequency attenvati.on poles

are amenable to somewhat different

treatment.

Synthesis of non-contiguous m~ltiplexers
having several narrow bandwidth channels
has been described [1], This ie based on

a perturbation theory where the the input
admittance of each channel i~ expressed as
a series expansion of terms dependent on
the inter-channel spaqinqs, The method is

suitable for total bandwidths up to one

octave, and is not applicable to the

lowpassjhighpass ease considered here.

This paper describes an approximate but
very accurate analytical method based on
the theory of broadband matching. Each
filter is designed as a br~adband matching
network over its respective low or high
passband, with the immittance of the other
filter representing the load network to be
matched. It ie found that excellent
results are obtained when only the first
element of the “other” filter is taken
into account in the load network. Good
results almost to fully contiguous
operation are obtained for high-degree
Chebyshev lowpasslhighpass diplexers.

THEORY

Fig. 2 illustrates the diplexer
characteristics for low and high pass
filters designed using the same prototype,
leading to the reciprocal relationship

(&J 4 ]/&!

where the equi-ripple pass..,.
Qland l/(O1.
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CH2870-4/9 1/0000-0543$01 .000 1991 IEEE 1991 IEEE MTT-S Digest



lNSER!!ION

LOSS

-v-v-w

0, 1

Fig. 2 Diplexer response characteristics

When 0, is sufficiently small the problem
may be solved with marginally acceptable
results by designing independent doubly-
terminated filters. The ripple closest to
cut-off is usually quite bad, and recourse
to optimization is generally required.

At the other extreme we have the contiguous
situation which effectively defines an
upper limit to @l lying typically in the

range .6 - .9, depending on degree n and
ripple level.

Here we are interested in the solution for
intermediate cases.

As stated above the method is to design
each filter as a matching network, with
the first element of the other filter in
shunt across the common port representing
the load network to be matched. There are
two sets of conditions to be
simultaneously satisfied, one for each
filter.
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Fig. 3 Lowpass matching nework

Consider the matching
having

problem of Fig 3.
the closed form solution given

previously [2]. Since the network has n+]

reactive elements, n for the filter and 1
for the load element due to the other
channel, it is logical to modify the
notation given in [3] so that the load
element is go and the filter elements have
indices from 1 to n, leading to the
formulas

2sin(T/2N)

90 =
x- Y (2)

9r9r+] =

4 sin(2r-1)~/2N sin(2r+l)~/2N

X2 + yz
(3)

+ sin2r~/N - 2xycosr~/N

for

r = 0,1,2, . ..n. with N = n+] (4)

and

s = (9n\go).(x+y)/(x-y) (5)

The matching network possesses an equi-
ripple response with the reflection
coefficient varying between

‘? cosh Nsinh -1 ~

max =
cosh Nsinh -1 x

(6)

and

‘?min =
sinh Nsinh-’y

(7)
sinh Nsinh-lx

The value of the terminating resistance is
equal to the VSWR

s max = (l+?)/(l-Q) (8)

calculated from (6) when N is even and is
equal tO l/Smin calculated from (7) when N
is odd.

In matching theory the value of the
maximum pass band reflection coefficient
(6) is minimized under the constraint

imposed by the load network, but here we
have a different set of conditions to be
satisfied, namely that the reactive part
of the load network is equal to that of
the first element of the other channel.
Referring to Fig 1, this gives the

condition
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i.e.

909] = Ldlz (9)

When the similar set of conditions is

written down for the matching of the
highpass filter it is found that the
identical equation (9) results, as
expected from the reciprocal relationship
(1).

Hence the desired set of g values for a
given VSWR is obtained by solving for the
known maximum reflection coefficient (6)
under the constraint imposed by (9), i.e.

there are two equations to solve for the
two unknowns x and y.

Actually it is necessary to modify the
theory-to allow for th-e value OF the
terminating resistances (Sma for N even
or ]/smin for N odd), noting t~at when we
replace these by unity, the actual VSWR
will increase to Sm2a for N even and to
Ss. for N odd. T%us in the case of N
e?~; wm~nmust design for a VSWR of ~~,

and since in practice it turns out that
there is little difference between Smax
and Smin , we use the same value for N odd.
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In the more general case when the low and
high pass filters have different degrees,
we will have 4 equations with 4 unknowns,
readily solvable by iteration.

RESULTS

To illustrate the validity of the method
it was decided to investigate high-degree
cases having very good return losses,
thus insuring a severe test of the theory.

Typical results for 10 section non-
contiguous diplexers are shown in Fig. 4
for a return loss of 26 dB with normalized
band edge parameterstil of .4, .7 and .81,
the latter representing 98% of the
contiguous case.

The return loss is practically identical
to the design level almost everywhere, the
only notable deterioration being to 20 dB
for the almost-contiguous case. As ~1
decreases the actual bandwidth increases,
which may be corrected by compensation,
(i.e. design for a slightly smaller til).
Also one or two of the return loss poles
become suppressed compared with the
prototype.

BAND EDGE
ml

--------- 0.4
RETURN 0.7
LOSS (dB) 0.81

/

INSERTION
------

LOSS (dB)

;!
/

//’

I I !

.1 .2 .3 .4 .3 .b .7 .8 .Y 1.0

Fig. 4 Example diplexer characteristics



Element values for a number of cases,
including those plotted in Fig. 4, are
given in Table 1, together with the
doubly– and singly-terminated (contiguous)
values for purposes of comparison. The
non-contiguous designs may be considered
reasonably asymptotic to the singly-
terminated values at the hightdl end, but
not ta the doubly-terminated values at tihe
low end. This is not surprising since
analysis shows that retur~ loss of
latter is only 12.8 dB when applied to
cased] = .5 and 15 dll for cd, .

indicating the necessity for the
equations.

the
the
.4,

new

We note that in this theory the g values
g~l- change compared with the doubly-
terminaked values, as in khe case of the
g values for contiguous diplexers.

CONCLUSIONS

Closed-form formulas fox the design of
non-contiguous lowpass/highpass diplexers
have been presented, giving an almost
perfect equi-ripple common port VSWR
response. The theory ie based on broadband
matching with the out-of-band channel
representing the load network for the in-
band channel,

It would be interesting to extend the
theory to situations other than the simple
lowpass/highpass case, e.g. to several
broadband bandpass channels. Here it is
unlikely that closed-form equations would
result, but the principle of applying
broadband matching theory still holds, and
numerical synthesis techniques might be
applied.

Another extension would be to take into
account the firs~ two or more elements of
the out-of-band filter, giving a more
complicated matching problem which
possibly could be tackled using general
broadband matching theory [3].
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TABLE 1

Element values for diplexersr n=10

9 1 2 3 4 5 6

.7~
Doubly-
term. 0.8299 1.4406 1.8280 1.7306 1.9435 1.7580 1.9132 1.6535 1.5926 0.7507

0.4 0.6379 1.0558 1.1752 1.4615 1.4130 1.6J92 1.4755 1.5484 1.2596 0.7299

0.5 0.7842 1.2447 1.3369 1.6193 ].5370 1.7387 ].5707 3.6765 ].3285 o.7685

0.6 0.9228 l.399o 1.4595 1.7271 1.6209 3.8129 J.63~7 ~.7300 1.3695 0.7870

10.7 1].0520 1.52351.55251.80171.6796 1.86031.67261.76181.3949 0.795c)I

0.81 1.1841 1.6287 1.6325 1.8542 2.7278 1.8887 1.7047 1.7753 1.4092 0.7880

‘ Contig. 1.2326 1.6551 1.5358 1.7060 1.5387 1.6846 1.4917 1.570~ ].2355 0.7112
(O.8277)I .— 1


